Reaction	$k_{ m d}{}^a$ $M^{-1} m sec^{-1}$	$k_{s^{b,h}}$ $M^{-1} \sec^{-1}$	$k_{ m d}/k_{ m s}{}^{\hbar}$	Δ H*, kcal mole ⁻¹	$\Delta S^*,$ cal mole ⁻¹ deg ⁻¹	Ref
cis-Cr(N ₃) ₂ ⁺ + Cr ²⁺	60°	1.9ª	31	8.1	-27	This work
$CrN_{3}^{2+} + Cr^{2+}$		1.3		9.6	-22.8	^e
cis-CrF ₂ ⁺ + Cr ²⁺		1.2×10^{-3}	<0.01	13	-24	
$CrF^{2+} + Cr^{2+}$		3.2×10^{-3d}		13.7	-20	
cis-Co(NH ₃) ₄ (N ₃) ₂ +	>103	>10 ³	0.6 ^g			This work
cis-Co(en) ₂ (N ₃) ₂ +	>10 ³	>10 ³	0.2°			This work

^a Rate constant for reaction proceeding via a double-bridged activated complex. ^b Rate constant for reaction proceeding via a singlebridged activated complex. ^c Reference 3. ^d Extrapolated value. ^e Reference 11. ^f Reference 5. ^e From the ratio [cis-Cr(N₃)₂+]/[CrN₃²⁺] produced. ^h If the values of k_s are corrected for the symmetry number factor, the values of k_d/k_s must be multiplied by 2.

It was found that chromium(II) indeed catalyzes the aquation of cis-Cr(N₃)₂⁺. Kinetic measurements were carried out by following the decrease in absorbance at 275 m μ , and the results are summarized in Table I. Identical results (see Table I) were obtained when cis-Cr(N₃)₂⁺ was prepared *in situ* by treating cis-Co-(NH₃)₄(N₃)₂⁺ with an excess of chromium(II): following the very rapid cis-Co(NH₃)₄(N₃)₂⁺-Cr²⁺ reaction ($k > 10^3 M^{-1} \sec^{-1} at 15^\circ$), the slower chromium(II)-catalyzed aquation of cis-Cr(N₃)₂⁺ was observed.

In Table II we present a summary of rate constants for some related reactions of chromium(II). One feature of interest is the large variation in the relative importance of double- and single-bridged transition states. The complexes cis-Cr(N₃)₂⁺ and cis-CrF₂⁺ display extreme behaviors. In the former case, the path that features two azide bridges is by far the dominant one. In the latter case, the exchange reaction mediated by two fluoride bridges could not be detected in spite of a thorough search.⁵ The complexes cis-Co- $(NH_3)_4(N_3)_2^+$ and cis-Co(en)₂(N₃)₂⁺ exhibit an intermediate behavior, and both single- and double-bridged paths provide substantial contributions to the over-all reaction. The decrease of k_d/k_s upon substitution of ammonia by ethylenediamine suggests that fairly mild modifications in the structures of the reactants may affect the relative importance of single- and doublebridged transition states. However, no rationalization can be offered, at the present stage of development of the subject, for the observed effects, and we hope that further experimentation will uncover some of the factors conducive to favoring one mechanism over the other.

It was noted previously, in comparing the rates of exchange of CrN_3^{2+} and CrF^{2+} with Cr^{2+} , that the enthalpy of activation was primarily responsible for the difference in rates.¹¹ Similarly, the difference in the rates of the chromium(II)-catalyzed aquations of *cis*- $Cr(N_3)_2^+$ and *cis*- CrF_2^+ is predominantly an enthalpy effect.

Finally, we note that the rates of the reactions of chromium(II) with CrN_3^{2+} and with cis- $Cr(N_3)_2^+$ (catalyzed aquation) are remarkably similar, suggesting that the nonbridging ligand effects of water and azide in *cis* positions are of comparable magnitude. Analogous results were obtained in previous work: the rate constants for the iron(II) reductions of *cis*-Co-

(10) We found the reaction of chromium(II) with cis-Co(NH₃)₄(N₃)₂⁺, followed by ion-exchange separation, a convenient way of preparing cis-Cr(N₃)₂⁺ solutions.

 $(NH_3)_4(OH_2)N_3^{2+}$ and $cis-Co(NH_3)_4(N_3)_2^+$ differ by less than a factor of 2.^{12,13}

(12) A. Haim, J. Am. Chem. Soc., 85, 1016 (1963); 86, 2352 (1964). (13) On the basis of the present work, it may be necessary to revise the previous suggestion¹² regarding the dot ble-bridged mechani...11 for the cis-Co(NH₃)₄(N₃)₂⁺-Fe²⁺ reaction. This sug_estion was made by taking cognizance of the relatively large increase 1.1 rate observed upon substitution of cis-NH₃ by N₃⁻ in Co(NH₃)₆N₃²⁺. However, it may be more appropriate to consider the change in rate upon substitution of H₂O by N₃⁻ in cis-Co(NH₃)₄(OH₂)N₃²⁺. The mild decrease in rate¹² coupled with the results of the present work would suggest that both cis-Co(NH₃)₄(OH₂)N₃²⁺ and cis-Co(NH₃)₄(N₃)₂⁺ make use, at least in part, of a single azide bridge.

(14) Fellow of the Alfred P. Sloan Foundation.

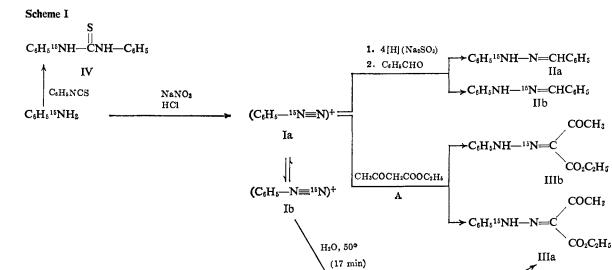
Albert Haim¹⁴

Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802 Received February 25, 1966

Nuclear Magnetic Resonance Spectroscopy. III. Structure of Phenyldiazonium Ion from ¹⁵N-H Coupling Study¹

Sir:

Nuclear spin-spin interaction between ¹⁵N and ¹H makes nmr spectroscopy a method of great potential for elucidation of the structure of organic compounds containing two or more nitrogen atoms. In pmr spectra ¹⁵N (spin = 1/2) produces a sharp doublet for the proton directly bonded to the nitrogen; the corresponding signal for ¹⁴N-H is usually a single broad peak because ¹⁴N possesses quadrupole moment and spin = 1. The large coupling (~90 cps) between directly bonded ¹⁵N and ¹H is of particular advantage in pmr spectra. The measurement of the area under the doublet due to ¹⁵N-H and the singlet due to ¹⁴N-H may be used for a quantitative estimation of the relative amounts of ¹⁵N and ¹⁴N in compounds under investigation.


We have used pmr spectroscopy of ¹⁵N-labeled compounds for studying the possibility of the isotope rearrangement (Ia \rightleftharpoons Ib) during the generation or reactions of phenyldiazonium ion (I).

$$(C_6H_5{}^{15}N\equiv N)^+ = (C_6H_5N\equiv {}^{15}N)^+$$
Ia Ib

Phenyldiazonium chloride was prepared from ¹⁵Naniline by diazotization with unlabeled sodium nitrite and subjected to the reactions outlined in Scheme I. The pmr spectra of the resulting compounds II and III recorded on a Varian A-60A spectrometer

⁽¹¹⁾ R. Snellgrove and E. L. King, Inorg. Chem., 3, 288 (1964).

⁽¹⁾ Part II: A. K. Bose, M. S. Manhas, and E. R. Malinowski, J. Am. Chem. Soc., 85, 2795 (1963); Part I: E. R. Malinowski, M. S. Manhas, G. H. Müller, and A. K. Bose, Tetrahedron Letters, 1161 (1963).

 $C_{6}H_{5}OH + {}^{15}N$ residual I

with about 80-mg samples in 0.25 ml of solvent were studied. In order to increase (where necessary) the signal to noise ratio and thus enhance the accuracy of measurements we have used a time-averaging computer (Varian C-1024 CAT) for recording pmr spectra.

A comparison of the area under the doublet corresponding to ¹⁵N-H signal and the singlet due to ¹⁴N-H in III (and II) indicated that 96.5 \pm 0.3% of the nitrogen adjacent to the phenyl ring and directly bonded to a proton corresponded to ¹⁵N. The ¹⁵N content of the starting material was determined to be 96.6 \pm 0.3% from the pmr spectrum of ¹⁵N-diphenylthiourea (IV) prepared from ¹⁵N-aniline.²

If the isotope rearrangement Ia \rightarrow Ib had taken place, the species IIb and IIIb would have been generated along with IIa and IIIa. The fact that the ¹⁵N content of the nitrogen adjacent to the phenyl ring in hydrozones II and III was the same as that of the starting material indicated that no noticeable isotope randomization had taken place.

Recently Lewis and Inscle³ reported that when ¹⁵Ndiazonium fluoroborate is subjected to hydrolysis at 50° until about 80% of the diazo compound is converted to phenol, the residual diazo compound is found to have undergone about 2.3% randomization. In order to explain the apparent rearrangement Ia \rightarrow Ib accompanying the hydrolysis of diazonium salts, Lewis and Insole suggest the presence of the intermediate V along with the caged pair VI.

We have duplicated the experimental conditions of Lewis and Insole. ¹⁵N-Labeled phenyldiazonium fluoroborate was subjected to decomposition in water for 17 min at 50°. The residual diazo compound was converted to the hydrazone III and its pmr spectrum

(2) ¹⁵N-Aniline was purchased from Merck Sharp and Dohme of Canada. The isotopic purity was reported to be 97%.
(3) J. M. Insole and E. S. Lewis, J. Am. Chem. Soc., 85, 122 (1963);
86, 32, 34 (1964).

(obtained by time averaging over 80 runs) was studied. From the measurement of areas, the ¹⁵N content of the N-H group was found to be $96.5 \pm 0.2\%$ in the samples of III obtained by route A as well as route B. The same ¹⁵N content for both of these samples was also found from their mass spectra.

CH3COCH2COOC2H6

P

To verify the accuracy of the pmr method for isotope level determination we diluted the above sample of hydrazone III with unlabeled III so that the resulting ¹⁵N content was 95.5%. Using the "CAT" with a sample size of 15 mg, the isotope level at the α -nitrogen in this sample was determined to be 95.7 \pm 0.4%. This indicates that had the isotope rearrangement taken place to the extent of 2–3% as suggested by Lewis and Insole, our spectral measurements would have detected it.

Apparently the observations of Lewis and Insole were affected by large limits of error inherent in their method of analysis. Our findings are that the diazonium ion Ia does not undergo rearrangement to Ib during reduction, coupling, or hydrolysis.

The formation of the intermediate V during hydrolysis of phenyldiazonium ion is improbable in the light of our observations. Our conclusions are consistent with recently reported kinetic investigations of Brown and Drury.⁴

Acknowledgment. We wish to thank Dr. P. T. Funke and Dr. E. R. Malinowski for useful discussions. This research was supported in part by a grant (GM-12122) from the U. S. Public Health Service.

(4) L. L. Brown and J. S. Drury, J. Chem. Phys., 43, 1688 (1965).

Ajay K. Bose, Irene Kugajevsky

Department of Chemistry and Chemical Engineering Stevens Institute of Technology, Hoboken, New Jersey Received December 17, 1965

The Optical Rotatory Properties of Poly-L-proline Sir:

Despite considerable study by several groups of investigators,¹⁻⁶ the optical rotatory properties of poly-L-